

Mathematics

Advanced Subsidiary GCE

Unit 4728: Mechanics 1

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Mark Scheme

Question			Expected Answer	Mark	Rationale/Additional Guidance		
1			$R^2 = 8^2 + 15^2$	M1	Uses Pythagoras 3 squared terms, addition		
			R = 17 N	A1			
			$\cos\theta = 15/17$	M1	Uses trig appropriately and targets either angle		
			$\theta = 28.1^{\circ}$	A1	Accept 28°, 0.49 rad		
				[4]			
2	i	Also	T - 0.45g = 0.45x0.98	M1	N2L on 0.45 kg, weight - tension and +/-0.98m		
		if in	T = 4.85(1) N	A1	Not 4.9. 4.8 (4.851 is exact, but 4.85 acceptable)		
		ii		[2]	$\{g=9.81 \rightarrow T=4.85 \text{ or } 4.86 \text{ or better}\}$		
	ii	Also	mg - 4.85(1) = 0.98m	M1	N2L on Q, weight – tension, tension=T(i), and 0.98m		
		If in	m = 4.85(1)/(9.8-0.98) or $m(q - 0.98) = 4.85(1)$	A1ft	Simplified to a single term in m, ft $cv(T(i))$		
		i	m = 0.55	A1	art 0.550		
			OR	[3]	$\{q=9, 81 \rightarrow m=0.55(0) \text{ or better}\}$		
			$0.98 - \alpha (m-0.45)/(m+0.45)$	M1	$a - a \times \Lambda(masses) / \Sigma(masses)$		
			$m = (a+0.98)/(a-0.98) \times 0.45$				
			m = 0.55				
			111 = 0.55				
	iii		$v^2 = (0 +) 2x0.98x0.36$	M1	Uses $v^2 = u^2 + 2as$, a not 9.8, 2as>0, $u = 0$ or omitted		
			$v = 0.84 \text{ ms}^{-1}$	A1			
				[2]			
	iv		$0 = 0.84^2 - 2x9.8s$	M1	$0 = (cv(iii))^2 - 2gs$, or t=cv(iii)/g and s = ut+/-gt ² /2		
			(s = 0.036)	A1	May be implied by final answer (eg 0.396)		
			S = 0.036 + 2x0.36 = 0.756 m	A1	Must be 3 sf (exact)		
				[3]	$\{g=9.81 \rightarrow s=0.756 \text{ or better}\}$		

1

Mark Scheme

June 2011

		Frequent mis-read "horizontal/vertical" MR version in {}		Allow all A1 marks in (i) and (ii) except final A1 in (ii).
3	i	$R = 0.8g - 6\cos 60$ { $R = 0.8g - 6\sin 60$ }	M1	Resolves vertically, (R=) difference of 2 forces
				inc. component of 6
		$R = 4.84$ { $R = 2.64$ }	A1	Accept 4.8 {2.6}
			[2]	$\{g=9.81 \rightarrow R=4.848 \ \{2.65\}; accept 4.8 \ \{2.6 \text{ or } 2.7\} \}$
	ii	Fr = 0.2x4.84 (=0.968) { Fr = 0.2x2.64(=0.5287)}	M1	Uses F=0.2(cv(i)) or F=0.2x(R found in (ii) by a method
				which would be given M1 in (i))
			M1	Uses N2L, 3 terms inc. component of 6
		6sin60 - 0.968 = 0.8a {6cos60 - 0.5287 = 0.8a}	A1	Fr need not be evaluated
		$a = 5.29 \text{ ms}^{-2}$ { $a = 3.09 \text{ ms}^{-2}$ A0}	A1	Accept 5.3
			[4]	{g=9.81→ a=5.28 {3.09 A0} Accept 5.3 {3.1 A0}
	iii	Fr = 0.2x0.8x9.8 (= 1.568)	B1	Uses Fr = 0.2x0.8g
		0.8a = -0.2x0.8x9.8	M1*	N2L, Fr only, accept use of Fr from (ii)
				Accept 0.8a = 0.2x0.8x9.8, (a = (-)1.96)
		0 = 4.9 - 1.96t	D*M1	Accept $4.9/1.96$, not $0 = 4.9 + 1.96t$
		t = 2.5 s	A1	Accept art 2.50
			[4]	{g=9.81→ t=2.50 Accept art 2.50}
4	i	a = 15/6 or d = 15/2	M1	Uses a = speed change/time
		$a = 2.5 \text{ ms}^{-2}$	A1	
		$d = 7.5 \text{ ms}^{-2}$	A1	Accept -7.5
			[3]	
	ii	T = 6+11+2 (=19)	M1	Accounts for totality of car journey (may be implied)
		x = 15(11+19)/2 or $15x6/2+15x11+15x2/2$	M1	Idea area = distance SR Accept 15x(13+17)/2 M1M1
		x = 225 m	A1	
			[3]	
	111	VValks = 20x(-)2 = (-)40 m	M1	Finds distance walked
		Jogs = 40/5 = 8 s	A1	
		$T_s = 60 - (\{6+11+2\} + 20 + 8)$	M1	T_s + ({6+11+2} + 20 + 8) = 60, needs all time elements
		$I_{s} = 13 s$	A1	
			[4]	

Mark Scheme

5	i	$V_{P} = 3 - 2.5 \times 0.4 (= 2)$	M1	Calculation of either speed, either directions, a =2.5
		$V_0 = 2.5 \times 0.4 (= 1)$	A1	Both magnitudes correct (disregard signs)
		+/-(0.5x2 - 0.2x1)(=+/-0.8)	B1	Momentum before
		0.5x2 - 0.2x1 = 0.5v + 0.2x3.2	M1	Uses conservation of momentum in collision
				(not both $v_{\rm P} = 3$ and $v_{\rm O} = 0$)
		$(v = 0.32) 0.32 \text{ ms}^{-1} \text{ up}$	A1	Accept "same", value positive
			[5]	
	ii	$V_Q = 3.2 - 2.5 \times 0.6 \ (=1.7)$	M1	Calculation of either speed with its correct time, a =2.5
		$V_{R} = 2.5 \times (0.4 + 0.6) (= 2.5)$	A1	Both magnitudes correct (disregard signs)
			M1	Uses momentum conservation in collision
				(not both $v_{Q} = 3.2$ and $v_{R} = 0$)
		0.2x1.7 - 0.3x2.5 = (0.2+0.3)v	A1ft	LHS different signs, RHS same signs,
				ft cv(speeds Q, R)
		$(v = -0.82) 0.82 \text{ ms}^{-1} \text{ down}$	A1	Value positive
			[5]	
6	i	"smooth ring ", " no friction at ring "	B1	If a variety of reasons is offered, "smooth ring" must
			[1]	be the last
	ii	$T\cos\theta + 5 = T\cos(90-\theta)$	M1	"Resolves horiz" equation, needs TCorSθ, 3 terms, 2 of
		$T\cos\theta + 5 = T\sin\theta$ (a)	A1	which are T resolved
		$Tsin\theta + Tsin(90-\theta) = 7$	M1	
		$Tsin\theta + Tcos\theta = 7$ (b)	A1	"Resolves vert" equation, needs TCorSθ, 3 terms, 2 of
			[4]	which are T resolved
				{Allow candidates solving for (iii) to begin in (ii)}
	iii	uses (b)+(a) and (b)-(a) for example	M1*	Attempts to solve 2 equations in 2 unknowns
		$T_{sin}\theta = 6 \text{ or } 2T_{sin}\theta = 12, T_{cos}\theta = 1 \text{ or } 2T_{cos}\theta = 2$	A1	Both terms have values correct
		$T^2 = 6^2 + 1^{(2)}$	D*M1	
		T = 6.08 N	A1	Accept √37, 6.1
		$Tan\theta = 6(/1)$	D*M1	Uses a correct trig identity
		$\theta = 80.5^{\circ}$	A1	Accept 81°, 1.4 rad, 1.41 rad
		OR	[6]	
		(b) gives $T=7/(sin\theta+cos\theta)$, subs in (a) for example	M1*	Attempts to solve 2 equations in 2 unknowns
		$12\cos\theta = 2\sin\theta$	A1	Correct two term equation in one variable
		then mark as 6(iii) below for D*M1 A1 D*M1 A1		

Mark Scheme

		Total	[72]	
		T = 3 s	A1 [7]	
				and chooses smaller positive root
		(t-3)(t-6)=0	M1	Tries to solve given quadratic, accept imperfect
		$t^2 - 9t + 18 = 0$ AG	A1	Explains T is non-zero, or explains division by t
		$t_{1}^{3} - 9t^{2} + 18t = 0$	D*M1	3 terms with different powers of t, no constant
		$0.1t^3 - 0.3t^2 + 0.2t = 0.2t^3/3 - 0.4t (+k)$	D*M1	Equates expressions for distance
		$x = 0.2t^{3}/3 - 0.4t$ (+k)	A1	$x = 2t^{3}/30 - 4/10 t (+k)$, or coeff t ³ 0.067 or better
	iv	$x = [0.2t^2 - 0.4dt]$	[3] M1*	Lises integration ignore omission of k
		t = 1.58 s	A1	Accept 1 + $1/\sqrt{3}$, 1.6, 1.57, or better
		t = 0.423 s	A1	Accept 1 - $1/\sqrt{3}$, 0.42, 0.422, or better
				attempt at formula, completing square or factorisation
	iii	$0.3t^2 - 0.6t + 0.2 = 0$	M1	Attempts to solve 3 term QE $v = 0$, accept imperfect
		a(1) = 0.001 + 0.00 a(1) = 0		
		0.11 - 0.31 + 0.21 = 0 ($t=1$, and disregard others)		Allempis to solve x=0 Puts solution in a formula
		OR	[3]	Attempts to achieve v. O
		x(1) = 0 AG	A1	
		$x(1) = 0.1x1^3 - 0.3x1^2 + 0.2x1$	D*M1	Puts solution in x formula
	ii	0.6t - 0.6 = 0 (t = 1)	M1*	Attempts to solve a=0
			[4]	
		a = 0.6t - 0.6		Correct differentiation of candidate's v(t)
		$v = 0.3t^2 - 0.6t + 0.2$	A1	Lines differentiation of v
7	i	v = dx/dt	M1	Uses differentiation of x

Continued

Mark Scheme

Question 6 specifies the method students are likely to find most helpful. A more sophisticated approach, resolving parallel and perpendicular to the string, is mathematically valid, and leads to correct solutions. If seen it should be marked according to the following scheme, and no penalty levied.

The final 4 marks, in 6(iii), use the same mathematics as may be encountered when choosing an unorthodox method for solving the two simultaneous equations generated in 6(ii) of the specified method (see 6(iii) above).

		OR		
6	i	"smooth ring", "no friction at ring"	B1	If a variety of reasons is offered, "smooth ring" must
			[1]	be the last
	ii	$T = 7\cos\theta + 5\sin\theta$ (a)	M1	Resolves //AR
			A1	(Need not create Tcos/sinθ)
		$T = 7\sin\theta - 5\cos\theta$ (b)	M1	Resolves //BR
			A1	(Need not create Tcos/sinθ)
			[4]	
	iii	Equating expressions for T from (a) and (b)	M1*	Attempts to solve 2 equations in 2 unknowns
		$2\sin\theta = 12\cos\theta$	A1	Correct two term equation in one variable
		$\tan\theta = 6(1)$	D*M1	Uses a correct trig identity
		$\theta = 80.5^{\circ}$	A1	Accept 81°, 1.4 rad, 1.41 rad
		T = 7cos80.5 + 5sin80.5 or 7sin80.5 – 5cos80.5	D*M1	
		T = 6.08	A1	Accept √37, 6.1
			[6]	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

