GCE

Mathematics

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question			Expected Answer	Mark	Rationale/Additional Guidance
1			$\begin{aligned} & \mathrm{R}^{2}=8^{2}+15^{2} \\ & \mathrm{R}=17 \mathrm{~N} \\ & \cos \theta=15 / 17 \\ & \theta=28.1^{\circ} \end{aligned}$	M1 A1 M1 A1 [4]	Uses Pythagoras 3 squared terms, addition Uses trig appropriately and targets either angle Accept $28^{\circ}, 0.49 \mathrm{rad}$
2	i	Also if in ii	$\begin{aligned} & \mathrm{T}-0.45 \mathrm{~g}=0.45 \times 0.98 \\ & \mathrm{~T}=4.85(1) \mathrm{N} \end{aligned}$	$\begin{aligned} & \hline \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & {[2]} \end{aligned}$	N2L on 0.45 kg , weight - tension and $+/-0.98 \mathrm{~m}$ Not 4.9, 4.8 (4.851 is exact, but 4.85 acceptable) $\{\mathrm{g}=9.81 \rightarrow \mathrm{~T}=4.85$ or 4.86 or better $\}$
	ii	Also If in i	$\begin{aligned} & \mathrm{mg}-4.85(1)=0.98 \mathrm{~m} \\ & \mathrm{~m}=4.85(1) /(9.8-0.98) \text { or } \mathrm{m}(\mathrm{~g}-0.98)=4.85(1) \\ & \mathrm{m}=0.55 \\ & O R \\ & 0.98=\mathrm{g}(\mathrm{~m}-0.45) /(\mathrm{m}+0.45) \\ & \mathrm{m}=(\mathrm{g}+0.98) /(\mathrm{g}-0.98) \times 0.45 \\ & \mathrm{~m}=0.55 \end{aligned}$	M1 A1ft A1 [3] M1 A1 A1	$\begin{aligned} & \text { N2L on Q, weight - tension, tension }=T(\mathrm{i}) \text {, and } 0.98 \mathrm{~m} \\ & \text { Simplified to a single term in } \mathrm{m} \text {, } \mathrm{ft} \mathrm{cv}(\mathrm{~T}(\mathrm{i})) \\ & \text { art } 0.550 \\ & \{\mathrm{~g}=9.81 \rightarrow \mathrm{~m}=0.55(0) \text { or better }\} \\ & \mathrm{a}=\mathrm{g} \times \Delta \text { (masses) } / \Sigma \text { (masses) } \end{aligned}$
	iii		$\begin{aligned} & \mathrm{v}^{2}=(0+) 2 \times 0.98 \times 0.36 \\ & \mathrm{v}=0.84 \mathrm{~ms}^{-1} \end{aligned}$	$\mathrm{M} 1$ A1	Uses $v^{2}=u^{2}+2$ as, a not 9.8, 2as>0, $u=0$ or omitted
	iv		$\begin{aligned} & 0=0.84^{2}-2 \times 9.8 \mathrm{~s} \\ & (\mathrm{~s}=0.036) \\ & \mathrm{S}=0.036+2 \times 0.36=0.756 \mathrm{~m} \end{aligned}$	M1 A1 A1 [3]	$0=(\mathrm{cv}(\text { (iii) }))^{2}-2 \mathrm{gs}, \text { or } \mathrm{t}=\mathrm{cv}(\text { (iii }) / \mathrm{g} \text { and } \mathrm{s}=\mathrm{ut}+/-\mathrm{gt}^{2} / 2$ May be implied by final answer (eg 0.396) Must be 3 sf (exact) $\{g=9.81 \rightarrow \mathrm{~s}=0.756 \text { or better }\}$

			Frequent mis-read "horizontal/vertical" MR version in \{\}		Allow all A1 marks in (i) and (ii) except final A1 in (ii).
3	i		$\begin{array}{ll} R=0.8 g-6 \cos 60 & \{R=0.8 g-6 \sin 60\} \\ R=4.84 & \{R=2.64\} \end{array}$	M1 A1 [2]	Resolves vertically, ($\mathrm{R}=$) difference of 2 forces inc. component of 6 Accept $4.8 \quad\{2.6\}$ $\{g=9.81 \rightarrow R=4.848\{2.65\} ; \text { accept } 4.8\{2.6 \text { or } 2.7\}\}$
	ii		$\begin{array}{ll} \mathrm{Fr}=0.2 \times 4.84(=0.968) & \{\mathrm{Fr}=0.2 \times 2.64 . .(=0.5287 . .)\} \\ & \\ 6 \sin 60-0.968=0.8 \mathrm{a} & \{6 \cos 60-0.5287 . .=0.8 \mathrm{a}\} \\ \mathrm{a}=5.29 \mathrm{~ms}^{-2} & \left\{\mathrm{a}=3.09 \mathrm{~ms}^{-2} \quad \text { A0 }\right\} \end{array}$	$\begin{array}{\|c} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[4]} \end{array}$	Uses $\mathrm{F}=0.2$ (cv(i)) or $\mathrm{F}=0.2 \times(\mathrm{R}$ found in (ii) by a method which would be given M1 in (i)) Uses N2L, 3 terms inc. component of 6 Fr need not be evaluated Accept 5.3 $\{g=9.81 \rightarrow a=5.28\{3.09 \quad \mathrm{~A} 0\} \text { Accept } 5.3\{3.1 \mathrm{~A} 0\}$
	iii		$\begin{aligned} & \mathrm{Fr}=0.2 \times 0.8 \times 9.8(=1.568) \\ & 0.8 \mathrm{a}=-0.2 \times 0.8 \times 9.8 \\ & 0=4.9-1.96 \mathrm{t} \\ & \mathrm{t}=2.5 \mathrm{~s} \end{aligned}$	B1 M1* D*M1 A1 [4]	Uses $\mathrm{Fr}=0.2 \times 0.8 \mathrm{~g}$ N2L, Fr only, accept use of Fr from (ii) Accept $0.8 \mathrm{a}=0.2 \times 0.8 \times 9.8,(\mathrm{a}=(-) 1.96)$ Accept 4.9/1.96, not $0=4.9+1.96 t$ Accept art 2.50 $\{\mathrm{g}=9.81 \rightarrow \mathrm{t}=2.50$ Accept art 2.50$\}$
4	i		$\begin{aligned} & \mathrm{a}=15 / 6 \text { or } \mathrm{d}=15 / 2 \\ & \mathrm{a}=2.5 \mathrm{~ms}^{-2} \\ & \mathrm{~d}=7.5 \mathrm{~ms}^{-2} \end{aligned}$	M1 A1 A1 [3]	Uses a = speed change/time Accept -7.5
	ii		$\begin{aligned} & \mathrm{T}=6+11+2(=19) \\ & \mathrm{x}=15(11+19) / 2 \text { or } 15 \times 6 / 2+15 \times 11+15 \times 2 / 2 \\ & \mathrm{x}=225 \mathrm{~m} \end{aligned}$	M1 M1 A1 [3]	Accounts for totality of car journey (may be implied) Idea area $=$ distance SR Accept $15 x(13+17) / 2$ M1M1
	iii		$\begin{aligned} & \text { Walks }=20 x(-) 2=(-) 40 \mathrm{~m} \\ & \text { Jogs }=40 / 5=8 \mathrm{~s} \\ & \mathrm{~T}_{\mathrm{s}}=60-(\{6+11+2\}+20+8) \\ & \mathrm{T}_{\mathrm{s}}=13 \mathrm{~s} \end{aligned}$	M1 A1 M1 A1 [4]	Finds distance walked $\mathrm{T}_{\mathrm{s}}+(\{6+11+2\}+20+8)=60$, needs all time elements

Continued

Question 6 specifies the method students are likely to find most helpful. A more sophisticated approach, resolving parallel and perpendicular to the string, is mathematically valid, and leads to correct solutions. If seen it should be marked according to the following scheme, and no penalty levied.

The final 4 marks, in 6(iii), use the same mathematics as may be encountered when choosing an unorthodox method for solving the two simultaneous equations generated in 6(ii) of the specified method (see 6(iii) above).

			OR		
6	i		"...smooth ring...", "..no friction at ring.."	B1 [1]	If a variety of reasons is offered, "smooth ring" must be the last
	ii		$\begin{align*} & \mathrm{T}=7 \cos \theta+5 \sin \theta \tag{a}\\ & \mathrm{~T}=7 \sin \theta-5 \cos \theta \tag{b} \end{align*}$	M1 A1 M1 A1 [4]	Resolves //AR (Need not create Tcos/sin θ) Resolves //BR (Need not create Tcos/sin日)
	iii		$\begin{aligned} & \text { Equating expressions for } T \text { from }(a) \text { and }(b) \\ & 2 \sin \theta=12 \cos \theta \\ & \tan \theta=6(/ 1) \\ & \theta=80.5^{\circ} \\ & T=7 \cos 80.5+5 \sin 80.5 \text { or } 7 \sin 80.5-5 \cos 80.5 \\ & T=6.08 \end{aligned}$	M1* A1 D*M1 A1 D*M1 A1 [6]	Attempts to solve 2 equations in 2 unknowns Correct two term equation in one variable Uses a correct trig identity Accept 81$, 1.4 \mathrm{rad}, 1.41 \mathrm{rad}$ Accept $\sqrt{37}$, 6.1

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

